Le pulsar sono tra gli oggetti astrofisici più affascinanti e misteriosi dell’universo. Scoperte nel 1967 da Jocelyn Bell Burnell e Antony Hewish, si manifestano come sorgenti radio periodiche con una precisione straordinaria, in grado di scandire il tempo con regolarità paragonabile a quella degli orologi atomici. In realtà, esse sono stelle di neutroni rotanti, i resti collassati di supernovae, la cui emissione elettromagnetica è collimata in fasci che attraversano il nostro punto di vista come un faro celeste.
La loro dinamica — ossia il modo in cui ruotano, rallentano, interagiscono con il loro campo magnetico e con l’ambiente circostante — è una chiave fondamentale per comprendere la fisica delle alte energie, la gravità estrema e persino la struttura della materia nucleare. Questo saggio si propone di esplorare in profondità la dinamica delle pulsar, analizzando i meccanismi che regolano la loro evoluzione, instabilità e comportamento osservabile.
Le pulsar nascono a seguito dell’esplosione di una supernova, evento in cui una stella massiccia, al termine della sua vita, collassa sotto il proprio peso. Durante questo processo, il nucleo della stella implode, raggiungendo densità superiori a quelle del nucleo atomico. Gli elettroni e i protoni si combinano in neutroni, e il risultato è una stella di neutroni: un oggetto compatto con una massa tra 1.4 e 2 volte quella del Sole, ma con un raggio di appena una decina di chilometri.
Il principio di conservazione del momento angolare implica che, durante il collasso gravitazionale, la velocità di rotazione del nucleo aumenti drasticamente. Questo porta alla formazione di una stella di neutroni che può ruotare fino a centinaia di volte al secondo. Allo stesso tempo, il campo magnetico della stella progenitrice viene intensificato fino a valori tra 10^8 e 10^15 gauss, creando un potentissimo dipolo magnetico rotante.
Comprendere la dinamica di una pulsar richiede anche un’analisi della sua struttura interna. La composizione di una stella di neutroni è ancora oggetto di ricerca, ma si ipotizzano diversi strati: la crosta esterna, formata da nuclei pesanti immersi in un mare di elettroni; la crosta interna, dove i neutroni iniziano a diventare liberi e si ha una struttura simile a un reticolo solido; il nucleo esterno, composto prevalentemente da neutroni superfluidi, con una piccola percentuale di protoni e elettroni; e il nucleo interno, che potrebbe contenere materia esotica come condensati di pion o kaoni, o persino una fase di quark deconfinate.
La presenza di superfluidi e superconduttori nel nucleo gioca un ruolo cruciale nella dinamica rotazionale, in particolare nei cosiddetti "glitch" — improvvisi cambiamenti nel tasso di rotazione delle pulsar.
La caratteristica distintiva delle pulsar è la loro emissione periodica. Questa emissione nasce da processi di accelerazione di particelle cariche lungo le linee del campo magnetico rotante, soprattutto nelle zone polari. Il modello più accettato è quello del faro rotante: il campo magnetico dipolare ruota insieme alla stella, e la radiazione emessa nelle bande radio (ma anche X e gamma, per pulsar più energetiche) è collimata in due fasci. Quando uno di questi fasci interseca la linea di vista terrestre, riceviamo un impulso. La periodicità di questi impulsi ci consente di misurare la frequenza di rotazione della stella con una precisione estrema.
Le pulsar non mantengono la loro velocità di rotazione indefinitamente. Col tempo, la loro energia rotazionale viene dissipata attraverso l’emissione elettromagnetica e di onde gravitazionali. Questo porta a un rallentamento misurabile, noto come spin-down, descritto dall’equazione:
Ω˙=−KΩ^n
dove è la frequenza angolare, è la sua derivata nel tempo (il tasso di rallentamento), è una costante legata al momento d’inerzia e al campo magnetico, e è l’indice di frenamento (braking index), teoricamente uguale a 3 per un dipolo magnetico puro.
Tuttavia, osservazioni reali mostrano che il braking index è spesso diverso da 3, indicando che altri meccanismi, come venti di particelle o deformazioni strutturali, influenzano la dinamica della perdita di energia.
Un aspetto particolarmente interessante della dinamica delle pulsar è la presenza di glitch, ovvero improvvisi aumenti della frequenza di rotazione. Si tratta di eventi rari e transitori, durante i quali la pulsar accelera bruscamente, seguiti da un lento ritorno alla normale tendenza al rallentamento. I glitch sono interpretati come un’interazione tra il superfluido interno e la crosta solida della stella. Il superfluido può ruotare a velocità diverse dalla crosta e accumulare vortici quantizzati. Quando questi vortici si spostano improvvisamente, trasferiscono momento angolare alla crosta, provocando un glitch.
I glitch offrono una finestra unica sulla fisica della materia densa e sulle proprietà del superfluido nucleare, difficilmente accessibili in laboratorio.
Oltre ai glitch, esistono anche altri fenomeni dinamici, come la precessione libera, piccoli cambiamenti nell’orientamento dell’asse di rotazione rispetto all’asse di simmetria della stella, che causano variazioni periodiche nei profili degli impulsi osservati. Si osservano anche oscillazioni torsionali e modali, vibrazioni interne legate alla struttura elastica della crosta o alle modalità fluide nel nucleo, rilevabili tramite osservazioni di pulsar X e magnetar. Infine, in caso di deformazioni asimmetriche permanenti, una pulsar può emettere onde gravitazionali continue, come nel caso di deformazioni quadrupolari sostenute da “montagne” di pochi millimetri su una superficie rigida.
Le pulsar non sono sistemi chiusi: interagiscono attivamente con l’ambiente circostante. Una pulsar emette un vento relativistico di particelle cariche, noto come pulsar wind, che può creare una nebulosa di pulsar (Pulsar Wind Nebula, PWN) attraverso l’interazione con il mezzo interstellare. Un esempio spettacolare è la Nebulosa del Granchio, dove una pulsar giovane alimenta una nube altamente energetica visibile in tutto lo spettro elettromagnetico. Le instabilità nei getti, l’emissione variabile e le strutture a forma di anello osservate sono tutte manifestazioni della dinamica dell’interazione pulsar-ambiente.
Le pulsar millisecondo sono una classe speciale che ruota con periodi inferiori a 10 millisecondi. Queste pulsar non nascono così rapide, ma vengono “riciclate” attraverso accrescimento di materia da una stella compagna in sistemi binari. L’accrescimento trasferisce momento angolare alla stella di neutroni, facendo aumentare la sua velocità di rotazione. La dinamica di queste pulsar è meno turbolenta: presentano un rallentamento molto più lento, e un’emissione più stabile, rendendole ideali per esperimenti di timing ultra-precisi, come la ricerca di onde gravitazionali a bassa frequenza tramite pulsar timing arrays.
La dinamica delle pulsar è un campo ancora in piena evoluzione. Tra le frontiere più attive vi sono lo studio delle onde gravitazionali, con la possibile rivelazione di emissione continua da pulsar deformate, o da eventi come glitch catastrofici. Le simulazioni numeriche offrono modelli sempre più accurati della magnetosfera e dell’interazione fluido-elettromagnetica. La possibilità che alcune pulsar siano in realtà oggetti esotici con una fase deconfinate di quark — le cosiddette quark star — è anch’essa una prospettiva affascinante. Altri oggetti, come le pulsar transitorie (rotating radio transients), mettono in discussione la definizione classica di pulsar. Infine, le osservazioni multi-messaggero, che integrano segnali radio, X, gamma e gravitazionali, permettono di costruire un quadro sempre più completo della dinamica di questi oggetti.
Le pulsar non sono semplicemente fari cosmici: sono laboratori naturali per esplorare la fisica dei materiali estremi, le leggi della gravità e l’elettrodinamica relativistica. Studiare la loro dinamica — dal rallentamento rotazionale ai glitch, dalle emissioni radio alle interazioni ambientali — non solo permette di comprendere meglio questi straordinari oggetti, ma apre anche finestre sulle leggi fondamentali dell’universo.